Still Acting Green: Continued Expression of Photosynthetic Genes in the Heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata)

نویسندگان

  • Gwang Hoon Kim
  • Hae Jin Jeong
  • Yeong Du Yoo
  • Sunju Kim
  • Ji Hee Han
  • Jong Won Han
  • Giuseppe C. Zuccarello
چکیده

The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value <e(-30)) with proteins associated with plastid and photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses) to renew photosynthetic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heteroduplex mobility assay-guided sequence discovery: Elucidation of the small subunit (18S) rDNA sequences of Pfiesteria piscicida and related dinoflagellates from complex algal culture and environmental sample DNA pools By:

The newly described heterotrophic estuarine dinoflagellate Pfiesteria piscicida has been linked with fish kills in field and laboratory settings, and with a novel clinical syndrome of impaired cognition and memory disturbance among humans after presumptive toxin exposure. As a result, there is a pressing need to better characterize the organism and these associations. Advances in Pfiesteria res...

متن کامل

Mitogen-activated protein kinase in Pfiesteria piscicida and its growth rate-related expression.

A full-length cDNA (1,434 bp) of mitogen-activated protein kinase (MAPK), a key molecule of a signal transduction cascade, was isolated from the estuarine heterotrophic dinoflagellate Pfiesteria piscicida. This cDNA (Ppmapk1) encoded a protein (PpMAPK1) of 428 amino acid residues that shared about 30 to 40% amino acid similarity with MAPKs in other organisms. Phylogenetic analysis indicated tha...

متن کامل

Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria.

We investigated the feeding of the small heterotrophic dinoflagellates (HTDs) Oxyrrhis marina, Gyrodinium cf. guttula, Gyrodinium sp., Pfiesteria piscicida, and Protoperidinium bipes on marine heterotrophic bacteria. To investigate whether they are able to feed on bacteria, we observed the protoplasm of target heterotrophic dinoflagellate cells under an epifluorescence microscope and transmissi...

متن کامل

Pfiesteria piscicida and Dinoflagellates Similar to Pfiesteria

Pfiesteria pisiccida is a microscopic, unicellular organism that is classified as both a mixotrophic and heterotrophic dinoflagellate, which has been associated with both fish deaths and a cause of human illness (Burkholder et al., 1992; Glasgow et al., 1995; Burkholder and Glasgow, 1997). This species possesses a complex life cycle that includes motile forms (e.g. zoospores, gametes, amoebae) ...

متن کامل

The Reclassification of Pfiesteria Shumwayae (dinophyceae): Pseudopfiesteria, Gen. Nov

Pfiesteria shumwayae Glasgow et Burkholder is assigned to a new genus Pseudopfiesteria gen. nov. Plate tabulation differences between Pfiesteria and Pseudopfiesteria gen. nov. as well as a maximum likelihood phylogenetic analysis based on rDNA sequence data warrant creation of this new genus. The Kofoidian thecal plate formula for the new genus is Po, cp, X, 40, 1a, 60 0, 6c, PC, 5þ s, 50 0 0, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013